

ALLOYS AND COMPOUNDS

Journal of Alloys and Compounds 217 (1995) 44-47

Luminescence of Eu^{3+} in $La_{1-x}Eu_xTa_7O_{19}$ (0 < x < 1) solid solution

Shun-ichi Kubota^a, Tadashi Endo^{a,*}, Hirotsugu Takizawa^b, Masahiko Shimada^b

^aDepartment of Molecular Chemistry and Engineering, Faculty of Engineering, Tohoku University, Aoba, Aoba-ku, Sendai, Miyagi 980, Japan ^bInstitute for Advanced Materials Processing, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980, Japan

Received 2 May 1994

Abstract

The luminescence properties of Eu^{3+} in $La_{1-x}Eu_xTa_7O_{19}$ solid solution were examined systematically. In the structure the nearest neighbours of La^{3+} sites doped with Eu^{3+} ions are arranged two-dimensionally with proper separations of about 0.62 nm. An intense emission peak is observed at 610 nm together with supplementary weak peaks. All the peaks can be ascribed to ${}^5D_j \rightarrow {}^7F_{j'}$ (j=0,1; j'=0, 1, 2, 3, 4) transitions of Eu^{3+} . The emission of the ${}^5D_0 \rightarrow {}^7F_2$ transition becomes intense and saturates with the Eu^{3+} concentration. As a result, the profile of the concentration quenching implies that energy migration of excited Eu^{3+} hardly takes place in $La_{1-x}Eu_xTa_7O_{19}$ solid solution.

Keywords: Luminescence; Energy migration; Quenching

1. Introduction

Many investigations have been performed on the emission properties of concentrated Eu^{3+} -doped compounds, e.g. $EuMgB_5O_{10}$ [1], $Li_6Eu(BO_3)_3$ [2], EuP_3O_9 [3], NaEuTiO₄ [4], etc. These phosphors display a high critical concentration for quenching in comparison with conventional Eu^{3+} -doped compounds such as YAIO₃: Eu^{3+} [5]. This is due to the long separations and low dimensional arrangements of Eu^{3+} ions in La^{3+} sites [6,7].

Recently Gatehouse [8] demonstrated that $CeTa_7O_{19}$ consists of a layer of $(Ce^{3+}, Ta^{5+})-O^{2-}$ polyhedra interstratified in a double layer of $Ta^{5+}-O^{2-}$ polyhedra. Since $EuTa_7O_{19}$ is isomorphous with $CeTa_7O_{19}$, Eu^{3+} ions are separated by a shortest distance of about 0.62 nm and displaced two-dimensionally. In addition, each layer involves Eu^{3+} sites set about 1.0 nm apart.

The interesting luminescence properties of the rare earth polytantalates [9–12] have been examined extensively. Very recently, the present authors reported on the luminescence properties of $La_{1-x}Tm_xTa_7O_{19}$ [13] and $Y_{1-x}Tm_xTa_7O_{19}$ [14,15]. Most of the data indicated that the emission intensity changes peculiarly with the Tm^{3+} concentration. Ustimovich et al. [9] reported that an intense emission of Eu^{3+} is obtained at n=7 in the $(La_{1-x}Eu_x)_2O_3-nTa_2O_5$ system. However, the results were not sufficient to understand the luminescence properties of $La_{1-x}Eu_xTa_7O_{19}$ solid solution. As described above, the crystal structure involves the La^{3+} sites doped with Eu^{3+} . In addition, the separations between La^{3+} sites seem to be favourable to avoid the quenching phenomenon due to interaction between Eu^{3+} ions. In this paper the luminescence properties of $La_{1-x}Eu_xTa_7O_{19}$ are examined and discussed on the basis of the characteristics of activated Eu^{3+} sites.

2. Experimental details

Descriptions of the preparation of samples and the experimental set-up are given in Refs. [13,15].

3. Results and discussion

EuTa₇O₁₉ was prepared by the solid state reaction of Eu₂O₃ and Ta₂O₅ at 1200 °C in air. Fig. 1 shows a scanning electron microscope (SEM) photograph of the EuTa₇O₁₉ powder produced. The grains are 0.2–2 μ m in size and irregular in shape. This observation was independent of the Eu³⁺ concentration in La_{1-x}Eu_xTa₇O₁₉. From the powder X-ray diffraction patterns, all samples can be regarded as being single

^{*}Corresponding author.

Fig. 1. SEM photograph of EuTa₇O₁₉.

phase. According to the data reported by Ustimovich et al. [9], $La_{1-x}Eu_xTa_7O_{19}$ is transformed from the LaTa₇O₁₉ structure type (orthorhombic) to the Eu-Ta₇O₁₉ structure type (tetragonal) at x = 0.05. However, we were able to index according to hexagonal symmetry for all Eu³⁺ concentrations, as reported in Refs. [16,17].

Fig. 2 shows the unit cell parameters *a* and *c* plotted against the *x* value of $La_{1-x}Eu_xTa_7O_{19}$. The unit cell parameters have a tendency to decrease linearly with increasing *x* because of the difference in ionic radius between La^{3+} (0.118 nm for eight coordination) and Eu^{3+} (0.107 nm) [18]. The result implies that Eu^{3+} ions are successively substituted for La^{3+} ions in the two-dimensional networks of $(La^{3+}, Ta^{5+})-O^{2-}$ polyhedra.

Fig. 3 shows the UV-visible diffuse reflection spectrum of EuTa₇O₁₉. It is seen that the absorbing edge is located around 270 nm (4.59 eV), which is similar to the value for LaTa₇O₁₉. The additional peaks can be ascribed to transitions from ${}^{7}F_{0,1}$ to each excited state of Eu³⁺ as indicated in the figure. There is a probability that a band due to charge transfer from O²⁻ to Eu³⁺ ions will be observed near 300 nm. However, no such band was observed in this spectrum.

Fig. 4 shows the emission spectra of La_{0.9}Eu_{0.1}Ta₇O₁₉ and EuTa₇O₁₉ under excitation at 396.3 nm measured at room temperature. The emission spectra consist of a main peak at 610 nm and several supplementary peaks. These peaks can be identified as ${}^{5}D_{j} \rightarrow {}^{7}F_{j'}$ (j = 0, 1; j' = 1, 2, 3, 4) transitions. Similar spectra were observed for all Eu³⁺ concentrations with some changes in intensity. In Fig. 4 the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (electric dipole transition)

Fig. 2. Concentration dependence of unit cell parameters of (a) a and (b) c of La_{1-x}Eu_xTa₇O₁₉.

Fig. 3. UV-visible diffuse reflection spectrum of EuTa₇O₁₉.

Fig. 4. Emission spectra of $La_{0.9}Eu_{0.1}Ta_7O_{19}$ and $EuTa_7O_{19}$ under excitation at 396.3 nm.

band is typically split into two or more bands. In comparison with the ${}^5D_0 \rightarrow {}^7F_1$ (magnetic dipole transition) band, the substitution sites for Eu³⁺ are considered to have no inversion symmetry. In addition, most powder samples were homogeneously coloured pale pink with increasing Eu³⁺ concentration. Consequently, the colouring must be caused by the Eu³⁺ emission itself.

Fig. 5 shows the emission spectra of $La_{0.9}Eu_{0.1}Ta_7O_{19}$ and $EuTa_7O_{19}$ upon cathode ray (CR) excitation under conditions of 15 kV and 0.5 μ A. These emission profiles are very similar to those of UV excitation. However, the intensity of the ⁵D₁ emission hardly decreases with increasing Eu³⁺ concentration. This implies that no cross-relaxation occurs between ⁵D₁ \rightarrow ⁵D₀ and ⁷F₀ \rightarrow ⁷F₃ transitions owing to the long separation of Eu³⁺ ions.

The Eu³⁺ concentration dependence of the emission intensity was examined using the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition band at 610 nm under excitation at 396.3 nm in $La_{1-r}Eu_{r}Ta_{7}O_{19}$ as shown in Fig. 6. It can be seen that the observed plot deviates slightly from a proportional increase in emission intensity with Eu³⁺ concentration up to x = 1.0. Saturation of the emission intensity is frequently observed in phosphors with a high critical concentration. For instance, orthorhombic in $La_{1-r}Eu_rP_3O_9$ [3] the Eu^{3+} sublattice consists of zigzag chains with an intrachain separation between Eu³⁺ ions of 0.42 nm and an interchain separation of 0.73 nm. Therefore energy migration of excited Eu^{3+} is

Fig. 5. Emission spectra of $La_{0.9}Eu_{0.1}Ta_7O_{19}$ and $EuTa_7O_{19}$ upon CR excitation under conditions of 15 kV and 0.5 μ A.

Fig. 6. Concentration dependence of Eu^{3+} emission (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition) intensity under excitation at 396.3 nm in $La_{1-x}Eu_{x}Ta_{7}O_{19}$.

apparently predominantly to neighbouring sites displaced one-dimensionally. On the other hand, in $EuTa_7O_{19}$ the EuO_8^{13-} polyhedra are isolated from each other by TaO_7^{9-} and TaO_8^{11-} polyhedra [8]. Also, the shortest distance between Eu^{3+} ions is estimated to be about 0.62 nm. As a result, the separation of Eu^{3+} ions is too long for interaction of the exchange type to occur in $EuTa_7O_{19}$. Consequently, the interaction between Eu^{3+} ions is considered to be of the dipole-dipole type.

Buijs and Blasse [1,3] reported that the type and strength of Eu³⁺-Eu³⁺ interactions are fairly predictable from the arrangement of activated centres and the emission profile. The dipole-dipole interaction decreases abruptly with increasing separation of Eu³⁺ ions [6]. Energy migration to killer sites, resulting in concentration quenching, is restricted by the long separation and, as described in Ref. [7], the low dimensionality of the substituted Eu³⁺ sites. The dipole-dipole interaction of Eu³⁺ ions, where the strength depends on the oscillation strength of the ${}^{5}D_{0}-{}^{7}F_{0}$ transition, is closely related to the intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ emission [3]. The ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ emission intensity is relatively weak in $La_{1-x}Eu_{x}Ta_{7}O_{19}$. It seems that this fact is another reason why the concentration quenching is very weak in $La_{1-x}Eu_{x}Ta_{7}O_{19}$.

4. Conclusions

The results of the Eu³⁺ concentration dependence of the emission intensity indicate that energy migration between Eu³⁺ ions hardly occurs in La_{1-x}Eu_xTa₇O₁₉. The long separation and low dimensionality of the La³⁺ sites doped with Eu³⁺ ions are eventually significant to avoid concentration quenching. Furthermore, the proper separation of Eu³⁺ results in no cross-relaxations. The emission spectrum of La_{1-x}Eu_xTa₇O₁₉ is independent of the concentration of Eu³⁺ in shape, even upon CR excitation. Therefore EuTa₇O₁₉ can be regarded as one of the concentrated Eu³⁺-doped compounds.

Acknowledgments

The authors wish to thank Dr. T. Hase, Dr. N. Kijima and Mr. N. Shimomura of the Mitsubishi Kasei Co. Ltd. for fruitful discussions. This work was supported in part by a Grant-in-aid for Scientific Research (B) of the Ministry of Education, Science and Culture, Japan and IKETANI Science and Technology Foundation (No. 052025), Japan.

References

- [1] M. Buijs and G. Blasse, J. Luminesc., 34 (1986) 263.
- [2] F.W. Tian, C. Fouassier and P. Hagenmuller, J. Phys. Chem. Solids, 48 (3) (1987) 245.
- [3] M. Buijs and G. Blasse, J. Luminesc., 39 (1988) 323.
- [4] P.A.M. Berdowski and G. Blasse, J. Luminesc., 29 (1984) 243.
- [5] G. Blasse, J. Luminesc., 1-2 (1970) 766.
- [6] D. Dexter, J. Chem. Phys., 21 (1953) 836.
- [7] H. Yamamoto, Oyobuturi, 42 (1973) 1246 (in Japanese).
- [8] B.M. Gatehouse, J. Solid State Chem., 27 (1979) 209.
- [9] A.B. Ustimovich, M.M. Pinaeva, V.V. Kuznetsova and V.S. Vasil'ev, *Izv. Akad. Nauk SSSR*, 13 (1) (1977) 142.
- [10] V.S. Vasil'ev and M.M. Pinaeva, Russ. J. Inorg. Chem., 25 (4) (1980) 500.
- [11] J.C. Michel, D. Morin, J. Primot and F. Auzel, C.R. Acad. Sci. Paris B, 284 (1977) 555.
- [12] V.S. Vasil'ev, M.M. Pinaeva and S.F. Shkirman, Russ. J. Inorg. Chem., 24 (4) (1979) 578.
- [13] S. Kubota, T. Endo, H. Takizawa and M. Shimada, J. Alloys Comp., 217 (1995) 44.
- [14] S. Kubota, T. Endo, H. Takizawa and M. Shimada, J. Mater. Sci. Lett., 11 (1992) 1243.
- [15] S. Kubota, T. Endo, H. Takizawa and M. Shimada, J. Chem. Soc. Jpn., 5 (1993) 630 (in Japanese).
- [16] S.N. Putilin, E.A. Krylov, N.F. Men'shenina and A.A. Evdokimov, *Russ. J. Inorg. Chem.*, 30 (3) (1985) 367.
- [17] M.G. Znev, E.D. Politova and S.Yu. Stefanvich, Russ. J. Inorg. Chem., 36 (6) (1991) 875.
- [18] R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B, 25 (1969) 925.